更多>>精华博文推荐
更多>>人气最旺专家

葛郯

领域:中国经济网陕西

介绍:该漏洞通过JRMP协议,利用RMI机制的缺陷达到了执行任意反序列化代码的目的。...

陈志敏

领域:第一新闻网

介绍:本届金鹰节还新增“中国文联终身成就电视艺术家”奖,文艺家李准、剧作家王朝柱获此殊荣。利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么

利来国际娱乐w66
本站新公告利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么
1kl | 2018-12-18 | 阅读(299) | 评论(840)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么
r1b | 2018-12-18 | 阅读(162) | 评论(682)
一、对生活消费的影响学校超市门口(陈杰和同学杨凯从超市买东西出来)杨凯:饮料涨价了,饮料以前3元/瓶,现在涨到5元/瓶了。【阅读全文】
wn2 | 2018-12-18 | 阅读(774) | 评论(391)
请问:张三应交纳的个人所得税是多少?他的应税所得额为25000-3500=21500元不超1500部分1500×3%=45(元)超过1500元至4500元部分3000×10%=300(元)超过4500元至9000元4500×20%=900(元)超过9000元至35000元12500×25%=3125(元)     45+300+900+3125=4370(元)应纳税:【知识拓展】认识税收在国民经济中的作用(1)税收是组织财政收入的基本形式(主要来源)。【阅读全文】
abc | 2018-12-18 | 阅读(302) | 评论(4)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
nz0 | 2018-12-18 | 阅读(404) | 评论(581)
……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3【阅读全文】
hyz | 2018-12-17 | 阅读(336) | 评论(364)
PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.【阅读全文】
1nt | 2018-12-17 | 阅读(373) | 评论(503)
汽油和车这两种商品又是什么关系?一方的价格变动时,对相关商品的需求量有什么影响?两种商品组合使用,满足人们的某种需要假如C和D是一对互补品互补商品之间价格与需求成反向变动C价格—C需求量—D需求量C价格—C需求量—D需求量3、价格变动对相关商品的需求有影响一商品价格上涨时,其互补品的需求减少,反之则增加。【阅读全文】
s9x | 2018-12-17 | 阅读(275) | 评论(562)
一个民族没有精神力量难以自立自强,没有文化支撑的事业难以持续长久。【阅读全文】
利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么,利来娱乐国际最给利老牌网站是什么
0gi | 2018-12-17 | 阅读(173) | 评论(422)
未划线价格:未划线的价格可能是商品即将参加活动的活动价,仅供参考,具体活动时的成交价可能因用户使用优惠券等发生变化,最终以活动是订单结算页价格为准。【阅读全文】
d0o | 2018-12-16 | 阅读(312) | 评论(931)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
ln0 | 2018-12-16 | 阅读(37) | 评论(903)
PAGE第一章导数及其应用单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则f′(x0)等于(  ).A.B.C.1D.-12.等于(  ).A.-2ln2B.2ln2C.-ln2D.3.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  ).A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+24.抛物线在点Q(2,1)处的切线方程为(  ).A.-x+y+1=0B.x+y-3=0C.x-y+1=0D.x+y-1=05.函数f(x)=x3-2x+3的图象在x=1处的切线与圆x2+y2=8的位置关系是(  ).A.相切B.相交且过圆心C.相交但不过圆心D.相离6.若(2x-3x2)dx=0,则k等于(  ).A.0B.1C.0或1D.7.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  ).A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>68.函数f(x)的图象如图所示,下列数值排序正确的是(  ).A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)9.已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  ).A.B.C.D.10.若曲线在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于(  ).A.64B.32C.16D.8二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.经过点(2,0)且与曲线相切的直线方程为____________.12.三次函数f(x),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)=__________.13.在区间上,函数f(x)=x2+px+q与在同一点处取得相同的极小值,那么函数f(x)在上的最大值为__________.14.函数y=x2(x>0)的图象在点(ak,)处的切线与x轴交点的横坐标为ak+1,其中k∈N+,若a1=16,则a1+a3+a5的值是________.15.下列四个命题中正确的命题的个数为________.①若,则f′(0)=0;②若函数f(x)=2x2+1图象上与点(1,3)邻近的一点为(1+Δx,3+Δy),则;③加速度是动点位移函数s(t)对时间t的导数;④曲线y=x3在(0,0)处没有切线.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)求由曲线y=2x-x2,y=2x2-4x所围成的封闭图形的面积.17.(15分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. 参考答案1.答案:D 原等式可化为=-f′(x0)=1,因此f′(x0)=-答案:D =ln4-ln2=答案:D f′(x)=4x3,∴f(x)=x4+k.又f(1)=3,∴k=2,∴f(x)=x4+答案:A ,∴,又切线过点Q(2,1),∴切线方程为y-1=x-2,即-x+y-1=答案:C 切线方程为x-y+1=0,圆心到直线的距离为,所以直线与圆相交但不过圆心.6.答案:C 因为(x2-x3)′=2x-3x2,所以(2x-3x2)dx=(x2-x3)=k2-k3=0.所以k=0或k=答案:D f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,所以Δ=4a2-4×3×(a即a2-3a-18>0.解得a>6或a8.答案:B f′(2),f′(3)是x分别为2,3时对应图象上点的切线的斜率,f(3)-f(2)=,∴f(3)-f(2)是图象上x为2和3对应两点连线的斜率,故选答案:D ∵,∴-1≤y′<0,即曲线在点P处的切线的斜率-1≤k<0,∴-1≤tanα<0,又α[0,π),∴π≤α<π.10.答案:A ,∴切线斜率,切线方程是(x-a),令x=0,得,令【阅读全文】
qhz | 2018-12-16 | 阅读(542) | 评论(20)
在首次中非合作论坛召开后的15年间,中国对非洲投资额从5亿美元跃升至300亿美元,有效推动了非洲国家的基础设施建设和工业化进程,带动中国消费品、技术和设备的出口。【阅读全文】
wnj | 2018-12-16 | 阅读(36) | 评论(67)
训练第一天,四位小队长就早早集结,超高的早起要求虽然让学员们措手不及,但让大家更懂得了“自律”的含义。【阅读全文】
qmi | 2018-12-15 | 阅读(784) | 评论(230)
1.2国内外研究现状及研究区概况1.2.1国内外研究现状目前研究剩余油形成与分布的方法很多,如俞启泰【2】将有关剩余油形成与分布研究归纳为微观分布研究、宏观分布、饱和度研究三个部分。【阅读全文】
czz | 2018-12-15 | 阅读(894) | 评论(520)
(三)强化对民生事业的监督。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2018-12-18

利来娱乐w66 利来国际娱乐 利来娱乐国际最给利老牌网站 利来国际w66网页版 利来国际w66.com
w66利来国际手机app w66.cum 利来w66 利来ag旗舰厅手机版 利来国际手机客户端
利来国际最给利的老牌 利来AG旗舰厅 利来国际老牌w66 利来娱乐 利来国际旗舰版
利来娱乐城 w66利来guoji www.w66.com 利来国际老牌 利来国际w66利来国际w66
阜宁县| 嘉兴市| 资溪县| 屏东市| 宜城市| 会昌县| 马公市| 忻州市| 石首市| 阿尔山市| 岚皋县| 宜兴市| 天镇县| 伊通| 西林县| 托克逊县| 博客| 汶川县| 镇江市| 肇东市| 嘉黎县| 兴化市| 通化市| 黑龙江省| 万全县| 辽阳县| 海门市| 乌鲁木齐县| 吴忠市| 长沙市| 麦盖提县| 从江县| 上虞市| 安化县| 汶川县| 罗平县| 阳山县| 江孜县| 黄骅市| 德昌县| 兴安盟| http:// http:// http:// http:// http:// http://